ในการก่อสร้างอาคารในปัจจุบัน เราสามารถเห็นการใช้งานตะแกรงเหล็กไวร์เมช มาทดแทนการใช้เหล็กเส้นในส่วนของเหล็กเสริมล่าง ได้มากขึ้นเรื่อยๆ เช่น พื้นโรงงาน , พื้น Post-tension และถนนคอนกรีต เป็นต้นฯ เนื่องจากตะแกรงเหล็กไวร์เมช สามารถประหยัดเวลาและต้นทุนได้มากกว่าเป็นไหนๆ แต่ในการหันมาใช้ตะแกรงเหล็กไวร์เมช แทนเหล็กผูกก็อาจมีวิธีการใช้งานและหลักการคำนวณบางอย่างที่แตกต่างกัน หนึ่งในเรื่องที่หลายคนสงสัยมากคือ “การต่อทาบตะแกรงเหล็กไวร์เมช” ควรมีระยะเท่าไหร่จึงจะเหมาะสมและไม่ก่อให้เกิดปัญหาในภายหลัง
การต่อทาบตะแกรงเหล็กไวร์เมช
ตะแกรงเหล็กที่ใช้เป็นเหล็กเสริมในแผ่นพื้น จะต้องมีการต่อทาบ ดังนี้
1. ควรหลีกเลี่ยงการต่อลวดโดยใช้วิธีทาบ ณ บริเวณที่มีหน่วยแรงสูงสุด (ตำแหน่งที่ลวดพื้นรับแรงเกินกว่าครึ่งของหน่วยแรงที่ยอมให้) แต่ถ้าจำเป็นจะต้องใช้การต่อวิธีนี้ ต้องมีระยะทาบของตะแกรงไม่น้อยกว่าระยะเรียงของเส้นลวดบวกเพิ่มอีก 5 เซนติเมตร
2. การต่อลวดตะแกรงที่รับแรงไม่เกินครึ่งหนึ่งของหน่วยแรงที่ยอมให้จะต้องมีระยะทาบไม่น้อยกว่า 5 เซนติเมตร
อ้างอิง: มาตรฐานสำหรับอาคารคอนกรีตเสริมเหล็กโดยวิธีหน่วยแรงใช้งาน (วสท. 011007-19)
และทางสยามลวดเหล็กฯ ก็มีตะแกรงเหล็ก ไวร์เมช ที่ผ่านมาตรฐาน มอก. 737 ตอบโจทย์เรื่องคุณภาพ, ความปลอดภัย, รวดเร็ว
และยังมีบริการการออกแบบ CAD, การจัดสรรงบประมาณ, แถมมีวิศวกรให้คำปรึกษาฟรี!!
ดูรายละเอียดสินค้าเพิ่มเติม: https://www.siw.co.th/th/product-detail/wire-mesh
08-06-2022
ลักษณะการขนส่งที่ดีควรเป็นอย่างไร นอกจากสินค้าที่ดี มีคุณภาพแล้ว การจัดส่งสินค้าก็มีความสำคัญไม่แพ้กัน เนื่องจากความต้องการของลูกค้าเป็นสิ่งสำคัญที่จำเป็นต้องส่งสินค้า ให้ได้ตรงตามความต้องการของลูกค้า รวมถึงการคลุมผ้าใบเพื่อป้องกัน สินค้าไม่ให้โดนฝน และให้สินค้าถึงมือผู้ซื้ออย่าปลอดภัย ลักษณะของการขนส่งที่ดี 1. มีความรวดเร็วและตรงต่อเวลา 2. ส่งสินถ้าถึงที่หมายอย่างปลอดภัย 3. มีการป้องกันการสูญเสียที่จะเกิดขึ้น 4. การแต่งกายของคนขับที่ถูกต้อง และมีความสุภาพเรียบร้อย มาดูกันครับว่าการแต่งการให้ถูกต้องในการจัดส่งของ ของ บริษัทสยามลวดเป็นอย่างไร การแต่งตัวของคนขับรถส่งสินค้า - สวมแว่นตานิรภัย - หมวกนิรภัยและคาดสายรัดคาง - ติดบัตรที่บริษัทออกให้ ตลอดเวลาที่อยู่ในพื้นที่ - สวมเสื้อสะท้อนแสง - สวมใส่รองเท้านิรภัยที่สภาพพร้อมใช้งาน
08-06-2022
ที่เราๆท่านๆ รู้จักตะแกรงเหล็กกันดีอยู่แล้ว แต่ทราบหรือไม่ว่านอกจากตะแกรงเหล็ก ที่นำไปใช้ปูพื้นถนน หรืออาคารรวมถึงผนัง Precast แล้ว ตะแกรงเหล็ก ของสยามลวดเหล็ก ก็ยังมี ตะแกรงที่ชุบกัลวาไนซ์ ที่สามารถนำไปปูรอง ฉนวนกันความร้อนใต้หลังคาได้อีกด้วย ซึ่งทางสยามลวดเอง สามารถผลิตเป็นแผ่น ตามขนาดที่ลูกค้าต้องการแล้วนำไปวางใช้งานได้เลย ได้ทั้งความสะดวกสบาย และรวดเร็ว ในการทำงาน แบบนี้งานเสร็จเร็วแน่นอน
25-10-2024
We are pleased that our chief, [Nipon nunsurakij - COO, Siam Industrial Wire], has reaffirmed the positioning of SIW's products as "SIW’s excellence is rooted in continuous improvement, sustainable practices, and expert in testing service." Nipon nunsurakij COO - Siam Industrial Wire Co., Ltd.
10-10-2022
คอนกรีตอัดแรงคืออะไร? หลายท่านอาจยังไม่คุ้นกับคำว่า คอนกรีตอัดแรง ว่าคืออะไร คอนกรีตอัดแรงคือส่วนผสมระหว่างคอนกรีตกำลังสูงและ (ลวดเหล็กกล้าเสริมคอนกรีตอัดแรง หรือ PC WIRE และ PC STRAND) การรวมกันนี้ทำให้เกิดเป็น คอนกรีตอัดแรงที่มีแข็งแรงมาก ในสมัยก่อน ก่อนที่จะมีคอนกรีตอัดแรง คานคอนกรีตธรรมดาถึงแม้จะความแข็งของคอนกรีตเพื่อรับน้ำหนักของมันเอง แล้วก็ตาม แต่เมื่อมีการโหลดน้ำหนักเพิ่ม เช่น การวางตู้ ชั้น หรือสิ่งของต่างๆ ตัวคอนกรีตเองมีการรับน้ำหนักเพิ่มก็จะมีรอยร้าวเป็นของคอนกรีตเกิดขึ้นมา เมื่อเวลาผ่านไปรอยร้าวเหล่านี้จะใหญ่ขึ้นและในที่สุดคอนกรีตมีการขยายตัวและทำให้คอนกรีตแตกหักได้ สาเหตุเหล่านี้เป็นต้นเหตุที่ทำให้คอนกรีตอัดแรงถูกคิดค้นขึ้น ประวัติย่อ: พ.ศ. 2429 P.H. Jackson วิศวกรชาวอเมริกัน ได้จดทะเบียนการก่อสร้างแผ่นพื้นคอนกรีตโดยการขันท่อนเหล็กเพื่อยึดพื้นคอนกรีตเข้าด้วยกัน ซึ่งวิธีการนี้ยังไม่ได้รับความนิยม เนื่องจากส่งผลให้ค่าใช้จ่ายในการก่อสร้างสูงขึ้น พ.ศ. 2431 C.E.W. Doehring วิศวกรชาวเยอรมัน ได้จดทะเบียนการก่อสร้างแผ่นพื้นคอนกรีตโดยการอัดแรงก่อนการรองรับน้ำหนักบรรทุกในประเทศเยอรมัน พ.ศ. 2451 CHARLES R. STEINER วิศวกรชาวอเมริกัน ได้ขอจดทะเบียนการก่อสร้างคอนกรีตเสริมเหล็ก โดยวิธีการขันน็อตเพื่อดึงเหล็กในขณะที่คอนกรีตกำลังเริ่มแห้งโดยวิธีการนี้ ก็ไม่ได้รับความนิยมอีกเช่นกัน พ.ศ. 2468 R.E. Dill ได้เสนอวิธีการใหม่คือ การใช้การเคลือบเหล็กด้วยสารที่ไม่ทำให้คอนกรีตเกาะกับเหล็ก ซึ่งเมื่อคอนกรีตหดตัวลงก็จะไม่ทำให้เหล็กนั้นหดตามลงไปด้วย ซึ่งวิธีการนี้ทำให้มีค่าใช้จ่ายในการใช้สารเคลือบเหล็กมากขึ้นไปอีก พ.ศ. 2471 E. Ereyssinet วิศวกรชาวฝรั่งเศส เริ่มใช้ลวดเหล็กซึ่งกำลังประลัยสูง 17,500 กก. ต่อตารางเซนติเมตร ในการผลิตคอนกรีตอัดแรง วิธีผลิตคอนกรีตอัดแรง: 1.Pre-Tension ดึงลวดอัดแรงก่อนการเทคอนกรีต เช่น เสาเข็ม คานสำเร็จรูป พื้นสำเร็จรูป และเสาไฟฟ้า เป็นต้น วิธีนี้เรียกว่าการอัดแรง เป็นวิธีก่อสร้างคอนกรีตอัดแรงที่ใช้กันแพร่หลายในปัจจุบัน คอนกรีตอัดแรงชนิดดึงลวดเหล็กก่อน มีหลักการง่ายๆว่าจะต้องมีแท่นซึ่งมีหัวแท่นที่แข็งแรงสองหัวอยู่ห่างกันพอสมควร ก. ใช้ลวดเหล็กแรงดึงสูง เช่น PC Wire และ PC Strand ร้อยผ่านหัวแท่น แล้วใช้แม่แรงหรือแจ็คดึงลวดเหล็กให้ยึดออกด้วยแรงประมาณ 70-80% ของกำลังสูงสุดของลวดเหล็กกล้า และใช้อุปกรณ์จับยึดลวดไว้ ข. เสร็จแล้วจึงเทคอนกรีต ลงในแบบให้หุ้มลวดเหล็กแรงดึงสูง หรือลวด PC Wire และ PC Strand ไว้เมื่อบ่มคอนกรีตจนมีกำลังความแข็งแรงประมาณ 70-80% ของกำลังความแข็งที่มีอายุ 28 วัน ค. แล้วจึงตัดลวดเหล็กแรงดึงสูง หรือลวด PC Wire และ PC Strand ให้หลุดจากแท่น ลวดเหล็กกล้าซึ่งถูกดึงทิ้งไว้ก็จะพยายามหดตัวมาสู่สภาพเดิม แต่คอนกรีตที่จับยึดยึดลวดไว้ตลอดความยาวก็จะต้านทานการหดตัวของลวดเหล็ก ทำให้คอนกรีตถูกลวดเหล็กอัดไว้ด้วยแรงอัด ชิ้นส่วนประเภทคอนกรีตอัดแรงชนิดดึงเหล็กก่อน ได้แก่ เสาเข็มคอนกรีตอัดแรง, เสาไฟฟ้าคอนกรีตอัดแรง, คานสะพาน, พื้นคอนกรีตสำเร็จรูป ซึ่งชิ้นส่วนของคอนกรีตเหล่านี้ จะต้องผลิตในโรงงานแล้วขนส่งไปใช้งานที่หน่วยงานก่อสร้าง การใช้คอนกรีตอัดแรงแทนที่คอนกรีตเสริมเหล็ก จะทำให้ชิ้นส่วนคอนกรีตเหล่านี้มีขนาดเล็กลง มีน้ำหนักน้อยลง ซึ่งจะช่วยให้การขนย้ายสะดวกมากขึ้น 2.Post-Tension Slab ดึงลวดอัดแรงหลังการเทคอนกรีต เช่น พื้นแผ่นเรียบไร้คาน (Flat Plate) คานสะพาน (Girder) เป็นต้น คอนกรีตอัดแรงชนิดดึงลวดเหล็กทีหลัง เป็นระบบที่พัฒนาต่อจากระบบแรกเพื่อแก้ปัญหาในกรณีที่ต้องการคอนกรีตอัดแรงชิ้นใหญ่ ๆ เราอาจไม่สามารถขนส่ง, ยกหรือเคลื่อนย้ายชิ้นส่วนนั้นได้ เช่น สะพานช่วงยาวๆ พื้นอาคารขนาดใหญ่ๆ กรณีเช่นนี้ เราจะต้องเตรียมวางท่อเหล็กหรือท่อพลาสติกซึ่งร้อยลวดเหล็กกล้ากำลังสูงไว้ภายใน คอนกรีตอัดแรงชนิดดึงลวดเหล็กทีหลัง จะเริ่มต้นโดยการหล่อคอนกรีตในไม้แบบที่ได้ติดตั้งไว้ โดยจะต้องมีการฝังท่อสำหรับร้อยเหล็กเสริม (hollow duct) ในตำแหน่งที่ออกแบบไว้ โดยปกติลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) จะถูกร้อยผ่านในท่อไว้ โดยยังไม่ดึงลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) ก่อนการเทคอนกรีต (บางครั้งสามารถร้อยลวดเหล็กผ่านท่อหลังจากคอนกรีตแข็งตัวแล้ว) หลังจากเทคอนกรีตแล้ว เมื่อคอนกรีตมีกำลังสูงถึงค่าที่ต้องการ จึงทำการดึงลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) การดึงลวดเหล็กอาจดึงเพียงข้างเดียว หรือดึงทั้งสองข้าง ขณะทำการดึงจะยึดปลายข้างหนึ่งไว้และดึงที่ปลายอีกข้างหนึ่ง (ในกรณีที่ออกแบบให้ดึงที่ปลายทั้งสองข้างจะทำการดึงทีละข้าง) โดยเมื่อดึงปลายข้างหนึ่งเสร็จแล้ว ก็จะสลับมาดึงปลายอีกข้างหนึ่ง เมื่อดึงแล้วจะทำการยึดปลายด้านให้ตึง โดยใช้อุปกรณ์ยึดปลาย ลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) จึงถูกดึงค้างไว้บนคอนกรีตทำให้เกิดแรงอัดในคอนกรีต เมื่ออัดแรงเสร็จแล้วขั้นตอนต่อไปคือการอัดน้ำปูน (grouting) เข้าไปในท่อที่ร้อยลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) น้ำปูนที่เข้าไปในท่อ ทำให้เกิดแรงยึดเหนี่ยวระหว่างเหล็กลวดเหล็กเสริมคอนกรีตอัดแรงกับคอนกรีต การควบคุมรอยแตกร้าว (crack) จึงทำได้ดีขึ้น และเพิ่มกำลังประลัย (ultimate strength) ให้สูงขึ้น น้ำปูนที่หุ้มลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) จะช่วยป้องกันการกัดกร่อนของลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) ได้อีกด้วย ตัวอย่างสินค้าที่ใช้ในงานคอนกรีตอัดแรง เช่น คานสะพาน เสาเข็ม คานสำเร็จรูป พื้นสำเร็จรูป เสาไฟฟ้า แผ่นพื้น หมอนรองรถไฟ เป็นต้น และทางสยามลวดเอง ก็มี PC WIRE มอก. 95-2540 และ PC STRAND มอก. 420-2540 ที่ใช้เป็นหัวใจหลักของการผลิตคอนกรีตอัดแรง ที่ได้รับการยอมรับ กว่า 50 ประเทศทั่วโลก รวมไปถึงบริการหลังการขายให้กับลูกค้าฟรี เช่น การเข้าไปสอบเทียบเครื่องดึงลวดให้ถึงหน้างานโดยไม่เสียค่าใช้จ่าย เพื่อลูกค้ามั่นใจในการใช้งานลวดอัดแรงของ สยามลวดเหล็กฯ PC Wire: https://www.siw.co.th/th/product-detail/pc-wire PC Strand: https://www.siw.co.th/th/product-detail/pc-strand
16-12-2024
Construction Trends to Watch in 2025 Modern construction trends focus not only on developing advanced and robust structures but also on integrating clean and alternative energy sources to promote sustainability and reduce environmental impacts. These trends mark a significant step toward a sustainable future. Sustainable Construction The concept of sustainable construction is gaining significant traction in the construction industry as it aligns with ESG principles, emphasizing environmental impact reduction and efficient resource use. Examples include: Utilizing environmentally friendly construction materials. Implementing carbon-reduction techniques in construction processes. Managing waste effectively by sorting and recycling materials. This approach not only mitigates environmental impacts but also enhances resource efficiency, ensuring that modern structures meet current needs without depleting future resources. Digital Technology in Construction Digital technologies are transforming workflows in the construction industry, making them more efficient and sustainable. Examples include: IoT (Internet of Things): Real-time data collection devices for monitoring safety on construction sites. AI (Artificial Intelligence): Data analysis tools to optimize processes, such as safety risk assessments. BIM (Building Information Modeling): Enables precise structural designs and project management, minimizing material waste and construction errors. Other advanced technologies, such as drones for 3D site surveys and AR/VR for virtual design, reduce costs, improve safety, and facilitate accurate decision-making. Clean Energy The adoption of clean energy in construction is accelerating, particularly in large-scale projects aiming to minimize environmental impacts. Examples include: Solar Roofs: Lower energy costs and reduce greenhouse gas emissions. Wind Energy: Harnessing wind power to decrease reliance on fossil fuel-based electricity. Using clean energy not only lessens environmental impacts but also reduces energy costs, creating sustainable structures to meet future needs efficiently. Prefabrication Prefabricated construction is another key trend. This involves designing and manufacturing components such as pre-made walls, floor panels, columns, and roofs in controlled factory environments before assembling them on-site. Prefabrication speeds up construction, reduces site complexities, and ensures quality. SIW’s Commitment to Construction Trends SIW prioritizes key construction trends, such as employing AI to enhance operational efficiency, utilizing clean energy like solar power, and supporting sustainable construction through recycled materials from EAF (Electric Arc Furnace) technology. SIW has also achieved Green Industry Level 4 certification and is working towards its Net Zero carbon emission goal by 2050, advancing sustainability in all dimensions of the construction industry.
05-07-2023
How deep should the pile be drilled to ensure safety?Piles are an essential component used to support and transfer the weight and load of a building to the ground. The load transfer of a pile occurs through the frictional resistance between the pile surface and the surrounding soil or through direct load transfer to the underlying soil or bedrock. The main purpose of using piles is to prevent the building or structure from settling or sinking into the ground. For small-scale buildings, the piles used are generally shorter in length and fewer in number. However, larger buildings may require a greater number of piles or longer piles to transfer the load to deeper layers of soil and bear a higher load capacity. If the pile extends to the level of hard soil, it can directly transfer the load from the building to the hard soil layer. How do piles bear the load?Piles bear the load through two main types of forces: "skin friction" and "end bearing." 1. Skin Friction: This force is generated by the frictional resistance between the pile surface and the surrounding soil. The magnitude of this force depends on the type of soil (each soil type has different skin friction properties) and the characteristics of the pile surface. 2. End Bearing: This force occurs at the pile tip, where the pile rests on a firm soil layer. The magnitude of this force depends on the type of soil, such as the presence of voids between soil particles. Soils with more voids have a lower load-bearing capacity, while compacted sands have a higher load-bearing capacity. In general pile design, for skin friction piles, the focus is on the size and length of the pile to generate sufficient lateral friction to support the applied load. For end bearing piles, the design aims to have the pile sit on a compacted sand layer. Types of piles used in construction can be broadly categorized into three main types based on their manufacturing and usage characteristics: 1. Spun Piles: These piles are produced by spinning concrete in a mold at high speed. This process results in a dense and strong concrete core with embedded steel reinforcement. Spun piles can be driven or drilled and are suitable for high-rise buildings that require strength to withstand wind loads and earthquakes. 2. Bored Piles: Bored piles are constructed by drilling a hole and then placing steel reinforcement and concrete into the drilled hole. They come in various lengths and sizes as specified. Bored piles are suitable for projects that require high strength and load capacity. 3. Prestressed Concrete (PC) Piles: PC piles are manufactured by placing concrete into a mold that contains prestressed steel wires or strands. The concrete is then compressed to enhance its strength. PC piles are used in construction projects that require high strength and durability in various environmental conditions. Siam Wire Industries (SIW) offers PC Wire and PC Strand, which are the primary components used in the production of prestressed concrete piles. SIW has gained recognition in over 50 countries worldwide and provides post-sales services, including on-site wire pulling tests for customers. These services ensure customer confidence in using SIW's prestressed wire products. PC Wire: [Link to SIW's PC Wire product page] (https://www.siw.co.th/en/product-detail/pc-wire) PC Strand: [Link to SIW's PC Strand product page] (https://www.siw.co.en/th/product-detail/pc-strand)
08-06-2022
เรามาทำความรู้จักกับลวดเหล็กสปริง กันดีกว่ามีกี่ชนิด ลวดสปริงสามารถแบ่งออกเป็นชนิดต่าง ๆ ดังนี้ 1. Hard Drawn Steel Wire - (JIS G 3521) ลวดเหล็กที่ผลิตภายใต้กระบวนการรีดเย็น โดยใช้เหล็กลวดที่มีส่วนผสมของคาร์บอนสูง ที่เหมาะกับการใช้ผลิตในหลากหลายอุตสาหกรรม เช่น ยานยนต์ เครื่องจักรกล เครื่องใช้ไฟฟ้า เป็นต้น โดย Hard Drawn Wire แบ่งเป็น 3 เกรด คือ SWA SWB และ SWC แต่ละเกรดมีคุณสมบัติที่แตกต่างกันไปขึ้นอยู่กับประเภทการใช้งาน 2. Piano Wire - ลวดเปียโน (JIS G 3522) ลวดเปียโนผลิตจากกระบวนการรีดเย็น โดยใช้ลวดเหล็กที่มีส่วนผสมคาร์บอน ด้วยคุณภาพที่ดีนี้ ลวดเปียโนจึงนำมาใช้ในการผลิตสปริงที่มีคุณภาพสูงเป็นพิเศษ เช่น สปริงในอุตสาหกรรมยานยนต์ โช๊ค เครื่องยนต์ อาทิ สปริงวาวล์ สปริงเบรค สปริงคลัชท์ หรือ เครื่องใช้ไฟฟ้าบางประเภท เป็นต้น ซึ่งลวดเปียโนสามารถแบ่งเกรดเป็น SWPA, SWPB และ SWPV โดยแต่ละเกรดมีความเหมาะสมในการใช้งานที่แตกต่างกันไปตามประเภทงาน
We are relentless in our pursuit for excellence in product quality and innovation. We take pride in being able to anticipate your needs and provide tailored solutions for each of your requirements. We strive to exceed expectations.