“5 อันดับบริการทดสอบลวดจาก SIW - Testing Service Center”
ด้วยอุปกรณ์ทันสมัย มีประสิทธิภาพสูง ความแม่นยำมากกว่า 99.95% และได้รับการรับรองมาตรฐาน ISO/IEC 17025 จาก NATA (National Association of Testing Authorities, Australia)
ข้อมูลบริการ
สอบถามเพิ่มเติมได้ที่ SIW - Testing Service Center
Tel: +66 81 170 2571
Email: marketing@siw.co.th
LineID: @siwthailand
04-12-2024
พื้นถนนคอนกรีต vs ถนนลาดยาง: เลือกแบบไหนดีกว่ากัน? การเลือกวัสดุสำหรับการก่อสร้างถนนเป็นปัจจัยสำคัญที่ส่งผลต่อประสิทธิภาพ อายุการใช้งาน และต้นทุนโดยรวม ทั้งพื้นถนนคอนกรีตและถนนลาดยางเป็นสองตัวเลือกหลักที่ใช้กันอย่างแพร่หลาย ซึ่งมีข้อดีและข้อเสียแตกต่างกัน สิ่งสำคัญที่สุดคือการเลือกวัสดุที่เหมาะสมกับการใช้งาน ถนนลาดยาง ถนนลาดยางมีความยืดหยุ่นและให้พื้นผิวเรียบลื่นมากกว่า แต่มีความอ่อนไหวต่อสภาพภูมิอากาศ เช่น อุณหภูมิสูงหรือฝนตกหนัก ซึ่งส่งผลให้เสื่อมสภาพเร็วกว่า มีอายุการใช้งานเฉลี่ยประมาณ 10-15 ปี ถนนลาดยางเหมาะสำหรับพื้นที่ทั่วไปและโครงการขนาดเล็ก ข้อดี • ค่าใช้จ่ายในการก่อสร้างต่ำกว่า • ก่อสร้างได้รวดเร็ว ใช้งานได้ทันทีหลังลาดยางเสร็จ • ซ่อมบำรุงง่ายและรวดเร็ว โดยใช้เทคนิค Re-surface (การปูผิวถนนใหม่) ข้อเสีย • เสื่อมสภาพเร็วกว่าคอนกรีต โดยเฉพาะในพื้นที่ที่มีอุณหภูมิสูงหรือน้ำท่วม • ค่าใช้จ่ายในการบำรุงรักษาสูง เนื่องจากต้องซ่อมแซมบ่อย ถนนคอนกรีต ถนนคอนกรีตเป็นโครงสร้างที่ประกอบด้วยปูนซีเมนต์ หิน ทราย และเหล็กเสริม เช่น Wire Mesh ซึ่งช่วยเพิ่มความแข็งแรงและทนทาน อายุการใช้งานเฉลี่ย 20-40 ปี เหมาะสำหรับโครงการขนาดใหญ่และถนนที่ต้องรับน้ำหนักมาก เช่น ทางหลวง สะพาน หรือโครงสร้างพื้นฐานขนาดใหญ่ ข้อดี • ความแข็งแรงและทนทานสูง รองรับน้ำหนักบรรทุกหนักได้ดี • พื้นผิวเสถียร มีความเรียบและลดการทรุดตัว • คุ้มค่าในระยะยาว มีค่าใช้จ่ายในการบำรุงรักษาต่ำ เพราะมีความทนทานต่อการใช้งานระยะยาว ข้อเสีย • ค่าใช้จ่ายในการก่อสร้างสูงกว่า • ใช้เวลาในการก่อสร้างนาน เนื่องจากต้องรอให้คอนกรีตเซ็ตตัวและแข็งแรงก่อนเปิดใช้งาน • ซ่อมบำรุงยาก เนื่องจากการซ่อมแซมคอนกรีตมีความซับซ้อนและมีค่าใช้จ่ายสูง การเลือกวัสดุระหว่างถนนคอนกรีตหรือถนนลาดยางนั้น ควรพิจารณาปัจจัยหลายอย่าง ทั้งจากลักษณะการใช้งาน งบประมาณ และสภาพแวดล้อมของพื้นที่ เพื่อให้ถนนตอบโจทย์การใช้งานได้อย่างเหมาะสม และทางสยามลวดเองก็มีตะแกรงเหล็ก Wire Mesh คุณภาพสูงที่เหมาะสำหรับการทำพื้นคอนกรีต ผลิตตามมาตรฐานอุตสาหกรรมไทย (มอก.) โดยได้รับการรับรอง มอก. 737 สำหรับแบบธรรมดา และ มอก. 926 สำหรับแบบข้ออ้อย/ยาง Wire Mesh : https://www.siw.co.th/th/product-detail/wire-mesh
13-11-2024
ข้อความแห่งความเชื่อมั่นและความร่วมมือ! คุณ Lisa L.C. Wang, President of Kingston Heavy Industrial Co., Ltd., ยกย่องคุณภาพอันยอดเยี่ยมและชื่อเสียงอันแข็งแกร่งของ SIW ที่สร้างขึ้นตลอดระยะเวลากว่า 20 ปีในอุตสาหกรรมโครงสร้างพื้นฐานของไต้หวัน และขอให้เราก้าวไปสู่ความสำเร็จใหม่ๆ ร่วมกัน "SIW's product quality has earned a strong reputation in Taiwan's infrastructure for over 20 years, and we wish you continued success in overcoming challenges, fostering partnerships, and achieving growth." Lisa L.C. Wang President - Kingston Heavy Industrial Co., Ltd.
06-06-2025
การใช้งานลวด PC Wire ในระบบ Post-tension vs Pre-tension ต่างกันอย่างไร? ลวด PC Wire หรือ Prestressed Concrete Wire เป็นวัสดุสำคัญในการเสริมแรงให้กับคอนกรีตอัดแรง (Prestressed Concrete) ซึ่งมีการใช้งานอยู่ใน 2 ระบบหลัก คือ Pre-tension และ Post-tension แม้จะใช้วัสดุคล้ายกัน แต่กระบวนการใช้งานและจุดเด่นของแต่ละระบบแตกต่างกัน Pre-tension (ก่อนเทคอนกรีต) ในระบบนี้ ลวด PC Wire จะถูกดึงให้ตึงก่อนที่คอนกรีตจะถูกเทลงในแบบพิมพ์ เมื่อลวดถูกดึงถึงแรงที่ต้องการแล้ว จะมีการเทคอนกรีตทับลงไป หลังจากคอนกรีตแข็งตัวจึงปลดแรงดึง ลวดจะพยายามคืนตัว ทำให้เกิดแรงอัดในเนื้อคอนกรีต เหมาะกับ: โรงงานผลิตชิ้นส่วนสำเร็จรูป เช่น แผ่นพื้น พื้น Hollow core คานคอนกรีต ข้อดี: ควบคุมคุณภาพได้ง่ายเพราะทำในโรงงาน ข้อจำกัด: ต้องใช้แบบหล่อขนาดใหญ่ และขนส่งชิ้นส่วนไปหน้างาน Post-tension (หลังเทคอนกรีต) ระบบนี้จะวางท่อลวด (Duct) ไว้ล่วงหน้าในแบบหล่อ แล้วเทคอนกรีต เมื่อตัวโครงสร้างแข็งแรงเพียงพอ จะทำการสอดลวด PC Wire ผ่านท่อ จากนั้นดึงลวดให้ตึงและยึดปลายลวดไว้ แล้วจึงอัดน้ำปูน (Grout) เข้าไปในท่อเพื่อป้องกันสนิมและยึดลวดกับคอนกรีต เหมาะกับ: โครงการขนาดใหญ่ เช่น อาคารสูง สะพาน พื้นไร้คาน ข้อดี: ประหยัดวัสดุ มีอิสระในการออกแบบมากขึ้น โครงสร้างบางลง ข้อจำกัด: ต้องการความชำนาญสูง และต้องมีการควบคุมหน้างานอย่างละเอียด *ทั้งสองระบบต่างมีข้อดีและข้อจำกัด การเลือกใช้ขึ้นอยู่กับประเภทของโครงการ งบประมาณ และความต้องการด้านวิศวกรรม ที่ SIW มีผลิตลวด PC Wire คุณภาพสูงสำหรับงานคอนกรีตอัดแรงทั้งระบบ pre-tension และ post-tension รับรองคุณภาพด้วยมาตรฐาน มอก. กว่า 70+ ประเทศทั่วโลก #SIW #PCwire #posttension #pretension
30-05-2023
ในการก่อสร้างอาคารในปัจจุบัน เราสามารถเห็นการใช้งานตะแกรงเหล็กไวร์เมช มาทดแทนการใช้เหล็กเส้นในส่วนของเหล็กเสริมล่าง ได้มากขึ้นเรื่อยๆ เช่น พื้นโรงงาน , พื้น Post-tension และถนนคอนกรีต เป็นต้นฯ เนื่องจากตะแกรงเหล็กไวร์เมช สามารถประหยัดเวลาและต้นทุนได้มากกว่าเป็นไหนๆ แต่ในการหันมาใช้ตะแกรงเหล็กไวร์เมช แทนเหล็กผูกก็อาจมีวิธีการใช้งานและหลักการคำนวณบางอย่างที่แตกต่างกัน หนึ่งในเรื่องที่หลายคนสงสัยมากคือ “การต่อทาบตะแกรงเหล็กไวร์เมช” ควรมีระยะเท่าไหร่จึงจะเหมาะสมและไม่ก่อให้เกิดปัญหาในภายหลัง การต่อทาบตะแกรงเหล็กไวร์เมช ตะแกรงเหล็กที่ใช้เป็นเหล็กเสริมในแผ่นพื้น จะต้องมีการต่อทาบ ดังนี้ 1. ควรหลีกเลี่ยงการต่อลวดโดยใช้วิธีทาบ ณ บริเวณที่มีหน่วยแรงสูงสุด (ตำแหน่งที่ลวดพื้นรับแรงเกินกว่าครึ่งของหน่วยแรงที่ยอมให้) แต่ถ้าจำเป็นจะต้องใช้การต่อวิธีนี้ ต้องมีระยะทาบของตะแกรงไม่น้อยกว่าระยะเรียงของเส้นลวดบวกเพิ่มอีก 5 เซนติเมตร 2. การต่อลวดตะแกรงที่รับแรงไม่เกินครึ่งหนึ่งของหน่วยแรงที่ยอมให้จะต้องมีระยะทาบไม่น้อยกว่า 5 เซนติเมตร อ้างอิง: มาตรฐานสำหรับอาคารคอนกรีตเสริมเหล็กโดยวิธีหน่วยแรงใช้งาน (วสท. 011007-19) และทางสยามลวดเหล็กฯ ก็มีตะแกรงเหล็ก ไวร์เมช ที่ผ่านมาตรฐาน มอก. 737 ตอบโจทย์เรื่องคุณภาพ, ความปลอดภัย, รวดเร็ว และยังมีบริการการออกแบบ CAD, การจัดสรรงบประมาณ, แถมมีวิศวกรให้คำปรึกษาฟรี!! ดูรายละเอียดสินค้าเพิ่มเติม: https://www.siw.co.th/th/product-detail/wire-mesh
01-07-2025
ในงานวิศวกรรม วัสดุที่แข็งแรง ไม่ได้แปลว่าทนทาน สิ่งที่ท้าทายกว่าแรงดึง คือ “แรงซ้ำ” หรือที่เรียกว่า Fatigue Fatigue คืออะไร? Fatigue (ฟาทีค) คือ ความล้าของวัสดุที่เกิดจากแรงกระทำซ้ำ ๆ เช่น ลวดเหล็กที่ใช้ในคอนกรีตอัดแรง เสาเข็ม หรือสะพาน แม้แรงแต่ละครั้งอาจไม่ถึงจุดที่ทำให้หักทันที แต่เมื่อเกิดขึ้นซ้ำ ๆ หลายหมื่น หลายแสนครั้ง วัสดุก็จะเริ่ม “ล้า” จนเสียหายโดยไม่เตือนล่วงหน้า ตัวอย่างความเสียหายที่เกิดจาก Fatigue -ลวดในสะพานขาด หลังจากใช้งานไม่กี่ปี -โครงสร้างถล่ม เพราะรับแรงสั่นสะเทือนต่อเนื่อง -ความเสียหายที่ไม่สามารถมองเห็นได้ด้วยตาเปล่า ทำไมต้องทดสอบ Fatigue ที่ SIW-Testing Service Center? 1. ได้มาตรฐานระดับโลก SIW เป็นห้องแล็บทดสอบลวดแห่งเดียวในไทยที่ ได้รับการรับรอง การทดสอบ Fatigue จาก NATA – หน่วยงานรับรองแล็บจากออสเตรเลีย มั่นใจได้ว่าเครื่องมือ แม่นยำ และกระบวนการเป็นไปตามมาตรฐานสากล 2. ทดสอบได้จริง ไม่ใช่แค่ทฤษฎี เราจำลองแรงกระทำซ้ำๆ เพื่อดูว่า ลวดของคุณทนได้กี่รอบก่อนเกิดความเสียหาย พร้อมรายงานผลแบบละเอียด กราฟชัดเจน ด้วยเครื่องมือที่ทันสมัย และ วิเคราะห์โดยผู้เชี่ยวชาญ 3. รองรับงานก่อสร้างระดับประเทศ SIW เป็นเบื้องหลังของโครงการโครงสร้างขนาดใหญ่ ทั้งทางด่วน สะพาน และระบบราง ที่ต้องการลวดคุณภาพสูง Fatigue Test คือขั้นตอนสำคัญก่อนลวดจะถูกใช้งานจริง
06-05-2025
บริการทดสอบคุณภาพลวดเหล็กอัดแรงจาก SIW-Testing Service Center เหมาะสำหรับผู้ผลิตหรือผู้ใช้งานลวดเหล็ก PC Wire และ PC Strand ที่ต้องการผลทดสอบคุณภาพสินค้าตามมาตรฐานต่างๆ ด้วยห้องแล็บจาก SIW ที่มีความเชียวชาญด้านการทดสอบคุณภาพลวดเหล็กอัดแรงกว่า 30 ปี สะดวก รวดเร็ว ประหยัด ได้รับการรับรองมาตรฐาน ISO/IEC 17025 จาก NATA (National Association of Testing Authorities, Australia) รายงานผลละเอียด ชัดเจน สอบกลับได้ทุกขั้นตอน พร้อมการวิเคราะห์และข้อเสนอแนะในการปรับปรุง อุปกรณ์ทันสมัย มีประสิทธิภาพสูง ความแม่นยำมากกว่า 99.95% ปรับแต่งการทดสอบได้ยืดหยุ่น ตามความต้องการของลูกค้า รวมถึงการทดสอบที่เฉพาะเจาะจง ข้อมูลบริการ: 1. Fatigue Testing Machine (เครื่องทดสอบความล้า) - แบรนด์: Zwick Roell รุ่น HA500 - รองรับมาตรฐานการทดสอบ: AS/NZS 4672.1, AS/NZS 4672.2, BS 5896, LNEC E 542, LNEC E 453, ISO 15630 Part 3, TIS 95-2540, TIS 420-2540 - PC Wire: รับน้ำหนักสูงสุด 500 kN, รองรับตัวอย่างขนาดเส้นผ่านศูนย์กลาง 5 – 22 มม. - PC Strand: รับน้ำหนักสูงสุด 500 kN, รองรับตัวอย่างขนาดเส้นผ่านศูนย์กลาง 5 – 22 มม. - Deformed Bar: รับน้ำหนักสูงสุด 500 kN, รองรับตัวอย่างขนาดเส้นผ่านศูนย์กลาง 5 – 40 มม. 2. Relaxation Testing Machine (เครื่องทดสอบความผ่อนคลาย) - รองรับมาตรฐานการทดสอบ: AS/NZS 4672.1, AS/NZS 4672.2, ASTM A416/A416M, ASTM A421/A421M, ASTM A881, BS 5896, ISO 15630-3, JIS G3536, TIS 95-2540, TIS 420-2540 - PC Wire: รับน้ำหนักสูงสุด 300 kN, รองรับตัวอย่างขนาดเส้นผ่านศูนย์กลาง 4 – 9 มม. - PC Strand: รับน้ำหนักสูงสุด 500 kN, รองรับตัวอย่างขนาดเส้นผ่านศูนย์กลาง 9.3 – 18.0 มม.
01-05-2023
การบ่มคอนกรีต (Curing) คือ วิธีการควบคุมและป้องกันไม่ให้น้ำส่วนที่เหลือจากการทำปฏิกิริยาระเหยออก เพื่อให้ปฏิกิริยาไฮเดรชั่น (hydration) ของซีเมนต์เกิดขึ้นอย่างสมบูรณ์ ส่งผลต่อการพัฒนากำลังอัดของคอนกรีต เป็นไปอย่างต่อเนื่อง จุดประสงค์ของการบ่มคอนกรีต : 1. เพื่อให้ได้คอนกรีตที่มีกำลังและความทนทานสูงสุด 2. เพื่อรักษาอุณหภูมิให้เหมาะสม และลดการระเหยของน้ำ เพื่อป้องกันการแตกร้าวของคอนกรีต วิธีการบ่มคอนกรีตที่นิยมใช้ : 1. ใช้การฉีดน้ำเป็นระยะเพื่อไม่ให้คอนกรีตแห้ง 2. ใช้พลาสติกคลุมหลังจากฉีดน้ำแล้วเพื่อป้องกันน้ำระเหยออก 3. ใช้กระสอบชุบน้ำหุ้มคอนกรีต 4. ใช้น้ำยาเคมีเคลือบผิวคอนกรีต และทางสยามลวดเอง ก็มี PC WIRE มอก. 95-2540 และ PC STRAND มอก. 420-2540 ที่ใช้เป็นหัวใจหลักของการผลิตคอนกรีตอัดแรง ที่ได้รับการยอมรับ กว่า 50 ประเทศทั่วโลก รวมไปถึงบริการหลังการขายให้กับลูกค้าฟรี เช่น การเข้าไปสอบเทียบเครื่องดึงลวดให้ถึงหน้างานโดยไม่เสียค่าใช้จ่าย เพื่อลูกค้ามั่นใจในการใช้งานลวดอัดแรงของ สยามลวดเหล็กฯ PC Wire: https://www.siw.co.th/th/product-detail/pc-wire PC Strand: https://www.siw.co.th/th/product-detail/pc-strand
07-08-2023
สนิมผิวและสนิมขุมต่างกันอย่างไร?สนิมผิว คือ สนิมที่เกาะที่ผิวของเหล็กผิวของเหล็กนั้นยังไม่ถูกกัดกร่อนจนขรุขระหรือเป็นหลุมกินเนื้อเหล็กเข้าไปจากผิวไม่ทำให้เกิดความเสียหายสนิมขุม คือ สนิมซึ่งเกิดที่ผิวโลหะเป็นเวลานานแล้วทำให้ผิวโลหะโดนกัดลึกเข้าไปในเนื้อเหล็กทำให้เนื้อเหล็กเกิดความเสียหายจนไม่สามารถนำมาใช้งานได้กลไกลการเกิดสนิมเมื่อโลหะเกิดปฏิกิริยาออกซิเดชันหรือถูกออกซิไดซ์ จะมีการกร่อนของโลหะนั้นๆ เกิดขึ้น ดังนั้นหลักของการป้องกันการกร่อนก็คือ การป้องกันไม่ให้โลหะเกิดปฏิกิริยาออกซิเดชันนั่นเองโลหะที่มีค่าครึ่งเซลล์รีดักชันสูงที่สุดได้แก่ ทองคำจะสามารถทนต่อการกร่อนได้มากที่สุด ทองคำจึงเป็นโลหะมีค่า แพลตินัม เงิน และทองแดงที่มีค่าครึ่งเซลล์รีดักชันเป็นบวกก็มีความสามารถทนต่อการกร่อนได้ดีรองลงมา ส่วนโลหะอื่น ๆ ก็จะเป็นโลหะที่ถูกออกซิไดซ์ได้ง่าย นั่นคือมีโอกาสกร่อนได้ง่ายกว่า ตัวอย่างการกร่อนที่พบได้บ่อยและชัดเจนคือการเกิดสนิมเหล็กหรือการเกิดออกไซด์ของเหล็ก เหล็กเป็นสนิมได้ก็ต่อเมื่อมีแก๊สออกซิเจนและน้ำอยู่ด้วย ปฏิกิริยาการเกิดสนิมเหล็กค่อนข้างซับซ้อนและมีลักษณะเฉพาะตัว แต่เชื่อว่ามีขั้นตอนที่สำคัญ คือปฏิกิริยาออกซิเดชันเกิดขึ้นเมื่อพื้นผิวส่วนหนึ่งของเหล็กทำหน้าที่เป็นแอโนด ดังสมการ Fe(s) Fe2+(aq) + 2e- ออกซิเจนถูกรีดิวซ์ที่ผิวอีกส่วนหนึ่งของเหล็กซึ่งทำหน้าที่เป็นแคโทด เมื่อมีน้ำอยู่ด้วย ดังสมการ 2O2 (g) + 4H2O(l) + 8e- 8OH-(aq) และมีปฏิกิริยาต่อเนื่องต่อไปคือ 4Fe2+(aq) + 8OH-(aq) 4Fe(OH)2 (aq)ที่มา: https://il.mahidol.ac.th/e-media/electrochemistry/web/electrochem04.htm
เรามุ่งมั่นที่จะเป็นเลิศในด้านคุณภาพของผลิตภัณฑ์และนวัตกรรมอย่างไม่หยุดยั้ง และเรายังมุ่งเน้นบริการที่ตอบโจทย์ความต้องการของลูกค้าเป็นอันดับหนึ่ง เพื่อให้คุณได้รับประสบการณ์พิเศษเหนือความคาดหมาย