SIW ทำธุรกิจด้วยหลัก ESG ที่พาองค์กรเติบโตและยั่งยืน มีการดำเนินการในด้าน Environment, Social and Governance (ESG) ตลอดระยะเวลาการดำเนินธุรกิจของบริษัทฯ การดำเนินกิจกรรมด้านสังคม Social เพื่อแสดงความมุ่งมั่นเรื่องความรับผิดชอบต่อสังคมทั้งภายในและภายนอกองค์กรโดยบริษัทได้รับการรับรองมาตรฐาน ISO 45001, TIS 18001, มรท 8001 และ CSR-DIW ตลอดถึงส่งเสริมการมีส่วนร่วมและการปรึกษาหารือของพนักงานและชุมชน มีการดำเนินงานการให้ปรับปรุง-เสริมสร้างความตระหนักความปลอดภัยแก่พนักงาน การให้ความรู้ให้แนวทางการดำเนินธุรกิจกับผู้ประกอบการและชุมชน การบริจาคให้กับการสร้างห้องสมุด การมอบทุนการศึกษาให้กับสถานศึกษาที่ตั้งอยู่ในพื้นที่ใกล้เคียงกับบริษัท การสร้างกิจกรรมสำนึกบ้านเกิดของพนักงาน ในด้านสิ่งแวดล้อม Environment บริษัทได้รับการรับรองมาตรฐาน ISO 14001, ISO 50001, Product carbon footprint label และ Environmental Product Declarations (EPD) โดยในทุกปีบริษัทมีการจัดทำมาตรการด้านสิ่งแวดล้อม มาตรการอนุรักษ์พลังงาน มาตรการ Low Emission Support Scheme (LESS) เพื่อลดผลกระทบต่อสิ่งแวดล้อมจากการดำเนินธุรกิจ ตลอดถึงมุ่งมั่นการลดภาวะโลกร้อนอันเกิดจากก๊าซเรือนกระจก สำหรับในด้านสิ่งแวดล้อมนี้บริษัทอยู่ระหว่างขยายความสามารถดำเนินโครงการ Carbon Border Adjustment Mechanism (CBAM) ในด้านธรรมาภิบาล Governance บริษัทได้รับการรับรองมาตรฐาน ISO 9001, ISO/IEC 17025, NATA-ISO/IEC 17025 และมาตรฐาน Product certificate จากแต่ละประเทศมากกว่า 25 มาตรฐานการรับรองผลิตภัณฑ์ อาทิ TIS, UK CARES, DCL, ASTM, JIS, MS, NZ และ AS เป็นต้น เป็นการสร้างความมั่นใจให้กับลูกค้า คู่ค้า และหน่วยงานราชการ ว่าบริษัทสามารถผลิตสินค้าและให้บริการอย่างมีคุณภาพสอดคล้องมาตรฐานสากล ส่งผลให้บริษัทได้รับความไว้วางใจกับคู่ค้ามากกว่า 50 ประเทศจากทั่วโลก และบริษัทมีการดำเนินโปรแกรมการพัฒนาความรู้ ความสามารถของพนักงานอย่างเป็นรูปธรรมและเป็นระบบผ่านกระบวนการ QCC ซึ่งในทุกปีพนักงานของบริษัทที่ผ่านการพัฒนาความรู้ QCC นี้ สามารถส่งผลงานเข้าประกวดนำเสนอผลงานในระดับประเทศ และนานาชาติ แล้วสามารถได้รับรางวัลระดับ Gold ได้ทุกปี เป็นที่ภาคภูมิใจของพนักงาน ครอบครัวของพนักงาน และองค์กร
05-07-2023
How deep should the pile be drilled to ensure safety?Piles are an essential component used to support and transfer the weight and load of a building to the ground. The load transfer of a pile occurs through the frictional resistance between the pile surface and the surrounding soil or through direct load transfer to the underlying soil or bedrock. The main purpose of using piles is to prevent the building or structure from settling or sinking into the ground. For small-scale buildings, the piles used are generally shorter in length and fewer in number. However, larger buildings may require a greater number of piles or longer piles to transfer the load to deeper layers of soil and bear a higher load capacity. If the pile extends to the level of hard soil, it can directly transfer the load from the building to the hard soil layer. How do piles bear the load?Piles bear the load through two main types of forces: "skin friction" and "end bearing." 1. Skin Friction: This force is generated by the frictional resistance between the pile surface and the surrounding soil. The magnitude of this force depends on the type of soil (each soil type has different skin friction properties) and the characteristics of the pile surface. 2. End Bearing: This force occurs at the pile tip, where the pile rests on a firm soil layer. The magnitude of this force depends on the type of soil, such as the presence of voids between soil particles. Soils with more voids have a lower load-bearing capacity, while compacted sands have a higher load-bearing capacity. In general pile design, for skin friction piles, the focus is on the size and length of the pile to generate sufficient lateral friction to support the applied load. For end bearing piles, the design aims to have the pile sit on a compacted sand layer. Types of piles used in construction can be broadly categorized into three main types based on their manufacturing and usage characteristics: 1. Spun Piles: These piles are produced by spinning concrete in a mold at high speed. This process results in a dense and strong concrete core with embedded steel reinforcement. Spun piles can be driven or drilled and are suitable for high-rise buildings that require strength to withstand wind loads and earthquakes. 2. Bored Piles: Bored piles are constructed by drilling a hole and then placing steel reinforcement and concrete into the drilled hole. They come in various lengths and sizes as specified. Bored piles are suitable for projects that require high strength and load capacity. 3. Prestressed Concrete (PC) Piles: PC piles are manufactured by placing concrete into a mold that contains prestressed steel wires or strands. The concrete is then compressed to enhance its strength. PC piles are used in construction projects that require high strength and durability in various environmental conditions. Siam Wire Industries (SIW) offers PC Wire and PC Strand, which are the primary components used in the production of prestressed concrete piles. SIW has gained recognition in over 50 countries worldwide and provides post-sales services, including on-site wire pulling tests for customers. These services ensure customer confidence in using SIW's prestressed wire products. PC Wire: [Link to SIW's PC Wire product page] (https://www.siw.co.th/en/product-detail/pc-wire) PC Strand: [Link to SIW's PC Strand product page] (https://www.siw.co.en/th/product-detail/pc-strand)
08-06-2022
ลักษณะการขนส่งที่ดีควรเป็นอย่างไร นอกจากสินค้าที่ดี มีคุณภาพแล้ว การจัดส่งสินค้าก็มีความสำคัญไม่แพ้กัน เนื่องจากความต้องการของลูกค้าเป็นสิ่งสำคัญที่จำเป็นต้องส่งสินค้า ให้ได้ตรงตามความต้องการของลูกค้า รวมถึงการคลุมผ้าใบเพื่อป้องกัน สินค้าไม่ให้โดนฝน และให้สินค้าถึงมือผู้ซื้ออย่าปลอดภัย ลักษณะของการขนส่งที่ดี 1. มีความรวดเร็วและตรงต่อเวลา 2. ส่งสินถ้าถึงที่หมายอย่างปลอดภัย 3. มีการป้องกันการสูญเสียที่จะเกิดขึ้น 4. การแต่งกายของคนขับที่ถูกต้อง และมีความสุภาพเรียบร้อย มาดูกันครับว่าการแต่งการให้ถูกต้องในการจัดส่งของ ของ บริษัทสยามลวดเป็นอย่างไร การแต่งตัวของคนขับรถส่งสินค้า - สวมแว่นตานิรภัย - หมวกนิรภัยและคาดสายรัดคาง - ติดบัตรที่บริษัทออกให้ ตลอดเวลาที่อยู่ในพื้นที่ - สวมเสื้อสะท้อนแสง - สวมใส่รองเท้านิรภัยที่สภาพพร้อมใช้งาน
08-06-2022
ผ่นพื้นสำเร็จรูปแบบกลวง หรือ (HOLLOW CORE) คือระบบแผ่นพื้นคอนกรีตอัดแรงแบบกลวง ผลิตจากคอนกรีตแห้งหรือ NO SLUMP CONCRETEที่มีกำลังอัดสูงถึง 350 กก/ตร.ซม. เสริมด้วยลวดเหล็กแรงดึงสูง ( PC WIRE ) หรือ ลวดเหล็กกล้าตีเกลียว ( PC STRAND ) สามารถผลิตความหนาได้ตั้งแต่ 6 ซม. ไปจนถึง 30 ซม. แผ่นพื้นสำเร็จรูปแบบกลวง (HOLLOW CORE) เหมาะสำหรับงานก่อสร้างอาคารประเภทต่างๆ เช่น อาคารพักอาศัย อาคารสำนักงาน ,โรงงานอุตสาหกรรม และห้างสรรพสินค้าโดยที่มี ความสามารถในการรับน้ำหนักบรรทุกปลอดภัยและ มีขนาดความกว้างและหนาให้เลือก ตามความเหมาะสมของการใช้งาน ส่วนความยาวนั้นสามารถผลิตได้ตามความต้องการ ที่จะนำไปใช้งาน สำหรับข้อดีที่เป็นจุดเด่นเลยของการใช้งานแผ่นพื้นสำเร็จรูปแบบกลวง (HOLLOW CORE) ก็คือ 1.น้ำหนักเบาช่วยประหยัดโครงสร้าง เช่น เสา, คาน , ฐานราก 2.แข็งแรง เพราะผลิตจากคอนกรีตกำลังอัดสูงทำให้แผ่นพื้น มีความทนทาน และคุณภาพสูง 3.รวดเร็วผลิตสำเร็จจากโรงงานลดเวลางานในการผูกเหล็กได้ 4.ประหยัด สะดวกไม่ต้องใช้ค้ำยันชั่วคราว และสิ่งที่จะขาดไม่ได้ และเป็นหัวใจสำคัญในการผลิต แผ่นพื้นสำเร็จรูปแบบกลวง (HOLLOW CORE) ที่จะทำให้ มีความแข็งแรงมากขึ้นนั้น จำเป็นต้องมี ลวดเหล็กกล้าเสริมคอนกรีตอัดแรง PC WIRE , PC STRAND ที่ใช้ในการผลิตแผ่นพื้นสำเร็จรูปแบบกลวง (HOLLOW CORE) และทางสยามลวดเอง ก็มีสินค้า PC WIRE และ PC STRAND ที่มีมาตรฐาน มอก.95-2540 และ 420-2540 ที่ได้รับความไว้วางใจ และเป็นที่ยอมรับมากกว่า 50 ประเทศทั่วโลก
15-11-2024
"Gen Z: Driving Change Toward Unlimited Growth" Meet Chayangkoon Arunchaiwat from the Country Sales team (Indian Subcontinent), sharing the fresh perspective of a new generation driving organization’s success. "Since I have been one of the member of SIW, I can feel that the work environment right here is comfy and flexible. Some fresh ideas can be generated by younger generation like me. Moreover, teamwork is also a milestone to achieve our goals." Chayangkoon Arunchaiwat Country Sales - Indian Subcontinent
08-06-2022
พื้น Post Tension โดยทั่วไป คือระบบพื้นคอนกรีตที่มีเหล็กเส้นที่รับแรงดึงได้มาก ๆ เสริมอยู่ภายใน และทำการดึงเส้น เหล็กนั้นให้ตึงเมื่อหล่อคอนกรีตเสร็จแล้ว เพื่อเพิ่มความเข้มแข็งของพื้น การที่มีเหล็กแรงดึงดูดเสริมและดึงอยู่ในพื้นคอนกรีตนี่เอง ทำให้โครงสร้างชนิดนี้มีหน้าตัดที่บางลง และไม่จำเป็นต้องมีคานมารับหัวเสาเพื่อการถ่ายน้ำหนัก จากพื้นสู่เสาด้วย ราคาค่าก่อสร้างหลายอาคารก็ถูกลง และยังลดความสูงระหว่างชั้นได้ด้วย พื้นระบบ Post Tension คือพื้นคอนกรีตเสริมเหล็กอัดแรง เพื่อให้โครงสร้างสามารถรับแรงได้มากกว่าปกติ จนทำให้โครงสร้าง พื้นเห็นเป็นเพียงแผ่นคอนกรีตบาง ๆ (20-28 ซม.) ไม่มีคานมารับตามช่วงเสา ทำให้พื้นระบบ Post Tension (สะดวกกว่าระบบมีคาน) และลดค่าใช้จ่ายในงานโครงสร้างได้ พอสมควรทีเดียว เนื่องจากพื้น Post-Tension เป็นระบบพื้นซึ่งดึงลวดอัดแรง จึงจำเป็นต้องร้อยลวดอัดแรงไว้ในท่อ Galvanized เพื่อไม่ให้คอนกรีตจับตัวกับลวดอัดแรง สามารถแบ่งออกเป็น 2 ระบบ ที่มีลักษณะต่างกันดังนี้ 1. Bonded System เป็นระบบมีแรงยึดแหนี่ยว ระหว่าง PC Strand กับพื้นคอนกรีตโดยหุ้มด้วยท่อเหล็กที่ขึ้นเป็นลอน เพื่อช่วยในเรื่องของแรงยึดเหนี่ยว ภายหลังเมื่อทำการอัดน้ำปูนเข้าไปให้เต็มท่อหลังการดึงลวด (GROUTING) เพื่อให้จับยึดระหว่าง PC Strand กับท่อเหล็ก จะใช้กับอาคารที่พักอาศัย ห้างสรรพสินค้า สำนักงาน และโครงสร้างขนาดใหญ่ 2. UnBonded System เป็นระบบไม่มีแรงยึดแหนี่ยว ระหว่าง PC Strand กับพื้นคอนกรีต แต่จะยึดที่บริเวณหัว Anchorage ที่ปลายพื้นทั้ง 2 ข้างเท่านั้น โดยใช้ ( PE unbounded PC strand )เป็นตัวยึดเหนี่ยว ระบบนี้ไม่เหมาะสำหรับอาคารที่จะมีการเปลี่ยนแปลงวัตถุประสงค์การใช้ งานในอนาคต แต่จะนิยมใช้กับระบบพื้นที่เป็น อาคารที่จอดรถ หรืออาคารขนาดเล็กที่มักจะไม่มีการเปลี่ยนแปลงการใช้งานที่ตามมาในอนาคต ข้อดีของ ระบบพื้นพื้น Post Tension รวดเร็วกว่า: สามารถก่อสร้างได้อย่างรวดเร็วเมื่อเทียบกับระบบพื้นโครงสร้างเสริมเหล็กทั่วไป คุ้มค่ากว่า : ออกแบบโดยคำนึงถึงความประหยัดของโครงสร้างและค่าก่อสร้างโดยรวม อาทิเช่นแรงงาน ไม้แบบ คอนกรีต เป็นต้น
10-10-2022
คอนกรีตอัดแรงคืออะไร? หลายท่านอาจยังไม่คุ้นกับคำว่า คอนกรีตอัดแรง ว่าคืออะไร คอนกรีตอัดแรงคือส่วนผสมระหว่างคอนกรีตกำลังสูงและ (ลวดเหล็กกล้าเสริมคอนกรีตอัดแรง หรือ PC WIRE และ PC STRAND) การรวมกันนี้ทำให้เกิดเป็น คอนกรีตอัดแรงที่มีแข็งแรงมาก ในสมัยก่อน ก่อนที่จะมีคอนกรีตอัดแรง คานคอนกรีตธรรมดาถึงแม้จะความแข็งของคอนกรีตเพื่อรับน้ำหนักของมันเอง แล้วก็ตาม แต่เมื่อมีการโหลดน้ำหนักเพิ่ม เช่น การวางตู้ ชั้น หรือสิ่งของต่างๆ ตัวคอนกรีตเองมีการรับน้ำหนักเพิ่มก็จะมีรอยร้าวเป็นของคอนกรีตเกิดขึ้นมา เมื่อเวลาผ่านไปรอยร้าวเหล่านี้จะใหญ่ขึ้นและในที่สุดคอนกรีตมีการขยายตัวและทำให้คอนกรีตแตกหักได้ สาเหตุเหล่านี้เป็นต้นเหตุที่ทำให้คอนกรีตอัดแรงถูกคิดค้นขึ้น ประวัติย่อ: พ.ศ. 2429 P.H. Jackson วิศวกรชาวอเมริกัน ได้จดทะเบียนการก่อสร้างแผ่นพื้นคอนกรีตโดยการขันท่อนเหล็กเพื่อยึดพื้นคอนกรีตเข้าด้วยกัน ซึ่งวิธีการนี้ยังไม่ได้รับความนิยม เนื่องจากส่งผลให้ค่าใช้จ่ายในการก่อสร้างสูงขึ้น พ.ศ. 2431 C.E.W. Doehring วิศวกรชาวเยอรมัน ได้จดทะเบียนการก่อสร้างแผ่นพื้นคอนกรีตโดยการอัดแรงก่อนการรองรับน้ำหนักบรรทุกในประเทศเยอรมัน พ.ศ. 2451 CHARLES R. STEINER วิศวกรชาวอเมริกัน ได้ขอจดทะเบียนการก่อสร้างคอนกรีตเสริมเหล็ก โดยวิธีการขันน็อตเพื่อดึงเหล็กในขณะที่คอนกรีตกำลังเริ่มแห้งโดยวิธีการนี้ ก็ไม่ได้รับความนิยมอีกเช่นกัน พ.ศ. 2468 R.E. Dill ได้เสนอวิธีการใหม่คือ การใช้การเคลือบเหล็กด้วยสารที่ไม่ทำให้คอนกรีตเกาะกับเหล็ก ซึ่งเมื่อคอนกรีตหดตัวลงก็จะไม่ทำให้เหล็กนั้นหดตามลงไปด้วย ซึ่งวิธีการนี้ทำให้มีค่าใช้จ่ายในการใช้สารเคลือบเหล็กมากขึ้นไปอีก พ.ศ. 2471 E. Ereyssinet วิศวกรชาวฝรั่งเศส เริ่มใช้ลวดเหล็กซึ่งกำลังประลัยสูง 17,500 กก. ต่อตารางเซนติเมตร ในการผลิตคอนกรีตอัดแรง วิธีผลิตคอนกรีตอัดแรง: 1.Pre-Tension ดึงลวดอัดแรงก่อนการเทคอนกรีต เช่น เสาเข็ม คานสำเร็จรูป พื้นสำเร็จรูป และเสาไฟฟ้า เป็นต้น วิธีนี้เรียกว่าการอัดแรง เป็นวิธีก่อสร้างคอนกรีตอัดแรงที่ใช้กันแพร่หลายในปัจจุบัน คอนกรีตอัดแรงชนิดดึงลวดเหล็กก่อน มีหลักการง่ายๆว่าจะต้องมีแท่นซึ่งมีหัวแท่นที่แข็งแรงสองหัวอยู่ห่างกันพอสมควร ก. ใช้ลวดเหล็กแรงดึงสูง เช่น PC Wire และ PC Strand ร้อยผ่านหัวแท่น แล้วใช้แม่แรงหรือแจ็คดึงลวดเหล็กให้ยึดออกด้วยแรงประมาณ 70-80% ของกำลังสูงสุดของลวดเหล็กกล้า และใช้อุปกรณ์จับยึดลวดไว้ ข. เสร็จแล้วจึงเทคอนกรีต ลงในแบบให้หุ้มลวดเหล็กแรงดึงสูง หรือลวด PC Wire และ PC Strand ไว้เมื่อบ่มคอนกรีตจนมีกำลังความแข็งแรงประมาณ 70-80% ของกำลังความแข็งที่มีอายุ 28 วัน ค. แล้วจึงตัดลวดเหล็กแรงดึงสูง หรือลวด PC Wire และ PC Strand ให้หลุดจากแท่น ลวดเหล็กกล้าซึ่งถูกดึงทิ้งไว้ก็จะพยายามหดตัวมาสู่สภาพเดิม แต่คอนกรีตที่จับยึดยึดลวดไว้ตลอดความยาวก็จะต้านทานการหดตัวของลวดเหล็ก ทำให้คอนกรีตถูกลวดเหล็กอัดไว้ด้วยแรงอัด ชิ้นส่วนประเภทคอนกรีตอัดแรงชนิดดึงเหล็กก่อน ได้แก่ เสาเข็มคอนกรีตอัดแรง, เสาไฟฟ้าคอนกรีตอัดแรง, คานสะพาน, พื้นคอนกรีตสำเร็จรูป ซึ่งชิ้นส่วนของคอนกรีตเหล่านี้ จะต้องผลิตในโรงงานแล้วขนส่งไปใช้งานที่หน่วยงานก่อสร้าง การใช้คอนกรีตอัดแรงแทนที่คอนกรีตเสริมเหล็ก จะทำให้ชิ้นส่วนคอนกรีตเหล่านี้มีขนาดเล็กลง มีน้ำหนักน้อยลง ซึ่งจะช่วยให้การขนย้ายสะดวกมากขึ้น 2.Post-Tension Slab ดึงลวดอัดแรงหลังการเทคอนกรีต เช่น พื้นแผ่นเรียบไร้คาน (Flat Plate) คานสะพาน (Girder) เป็นต้น คอนกรีตอัดแรงชนิดดึงลวดเหล็กทีหลัง เป็นระบบที่พัฒนาต่อจากระบบแรกเพื่อแก้ปัญหาในกรณีที่ต้องการคอนกรีตอัดแรงชิ้นใหญ่ ๆ เราอาจไม่สามารถขนส่ง, ยกหรือเคลื่อนย้ายชิ้นส่วนนั้นได้ เช่น สะพานช่วงยาวๆ พื้นอาคารขนาดใหญ่ๆ กรณีเช่นนี้ เราจะต้องเตรียมวางท่อเหล็กหรือท่อพลาสติกซึ่งร้อยลวดเหล็กกล้ากำลังสูงไว้ภายใน คอนกรีตอัดแรงชนิดดึงลวดเหล็กทีหลัง จะเริ่มต้นโดยการหล่อคอนกรีตในไม้แบบที่ได้ติดตั้งไว้ โดยจะต้องมีการฝังท่อสำหรับร้อยเหล็กเสริม (hollow duct) ในตำแหน่งที่ออกแบบไว้ โดยปกติลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) จะถูกร้อยผ่านในท่อไว้ โดยยังไม่ดึงลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) ก่อนการเทคอนกรีต (บางครั้งสามารถร้อยลวดเหล็กผ่านท่อหลังจากคอนกรีตแข็งตัวแล้ว) หลังจากเทคอนกรีตแล้ว เมื่อคอนกรีตมีกำลังสูงถึงค่าที่ต้องการ จึงทำการดึงลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) การดึงลวดเหล็กอาจดึงเพียงข้างเดียว หรือดึงทั้งสองข้าง ขณะทำการดึงจะยึดปลายข้างหนึ่งไว้และดึงที่ปลายอีกข้างหนึ่ง (ในกรณีที่ออกแบบให้ดึงที่ปลายทั้งสองข้างจะทำการดึงทีละข้าง) โดยเมื่อดึงปลายข้างหนึ่งเสร็จแล้ว ก็จะสลับมาดึงปลายอีกข้างหนึ่ง เมื่อดึงแล้วจะทำการยึดปลายด้านให้ตึง โดยใช้อุปกรณ์ยึดปลาย ลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) จึงถูกดึงค้างไว้บนคอนกรีตทำให้เกิดแรงอัดในคอนกรีต เมื่ออัดแรงเสร็จแล้วขั้นตอนต่อไปคือการอัดน้ำปูน (grouting) เข้าไปในท่อที่ร้อยลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) น้ำปูนที่เข้าไปในท่อ ทำให้เกิดแรงยึดเหนี่ยวระหว่างเหล็กลวดเหล็กเสริมคอนกรีตอัดแรงกับคอนกรีต การควบคุมรอยแตกร้าว (crack) จึงทำได้ดีขึ้น และเพิ่มกำลังประลัย (ultimate strength) ให้สูงขึ้น น้ำปูนที่หุ้มลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) จะช่วยป้องกันการกัดกร่อนของลวดเหล็กเสริมคอนกรีตอัดแรง (PC STRAND) ได้อีกด้วย ตัวอย่างสินค้าที่ใช้ในงานคอนกรีตอัดแรง เช่น คานสะพาน เสาเข็ม คานสำเร็จรูป พื้นสำเร็จรูป เสาไฟฟ้า แผ่นพื้น หมอนรองรถไฟ เป็นต้น และทางสยามลวดเอง ก็มี PC WIRE มอก. 95-2540 และ PC STRAND มอก. 420-2540 ที่ใช้เป็นหัวใจหลักของการผลิตคอนกรีตอัดแรง ที่ได้รับการยอมรับ กว่า 50 ประเทศทั่วโลก รวมไปถึงบริการหลังการขายให้กับลูกค้าฟรี เช่น การเข้าไปสอบเทียบเครื่องดึงลวดให้ถึงหน้างานโดยไม่เสียค่าใช้จ่าย เพื่อลูกค้ามั่นใจในการใช้งานลวดอัดแรงของ สยามลวดเหล็กฯ PC Wire: https://www.siw.co.th/th/product-detail/pc-wire PC Strand: https://www.siw.co.th/th/product-detail/pc-strand
07-08-2023
Surface corrosion and pitting corrosion differ in the following ways: Surface Corrosion: Surface corrosion refers to the corrosion that occurs on the surface of a metal, where the metal surface is not deeply eroded or penetrated by corrosion to the extent that it becomes pitted or significantly damaged. Pitting Corrosion: Pitting corrosion is corrosion that develops on the metal surface over an extended period, causing the metal surface to be deeply eroded and penetrated into the metal substrate. This leads to significant damage to the metal, rendering it unsuitable for use. Corrosion Mechanism:When a metal undergoes oxidation or is subjected to reduction, the corrosion process takes place, resulting in the erosion of the metal. Therefore, the primary goal of corrosion prevention is to inhibit the occurrence of oxidation reactions. The most resistant metals to corrosion are those with the highest positive electrode potentials, such as gold. Platinum, silver, and red gold also possess good resistance to corrosion due to their relatively high positive electrode potentials. On the other hand, other metals are more susceptible to oxidation, meaning they are more likely to corrode easily. An example of a commonly encountered and distinct corrosion process is the formation of rust on iron or the creation of iron oxide. Iron corrodes when there is the presence of oxygen and water. The corrosion process of iron is relatively complex and has unique characteristics. However, it is believed to involve critical steps, including: 1. Oxidation reaction occurs at a specific area on the iron surface, acting as the anode. This can be represented by the equation: Fe(s) Fe2+(aq) + 2e-2. Oxygen is reduced at another area of the iron surface, acting as the cathode. In the presence of water, the equation becomes: 2O2(g) + 4H2O(l) + 8e- 8OH-(aq)3. A subsequent reaction involves the formation of iron hydroxide: 4Fe2+(aq) + 8OH-(aq) 4Fe(OH)2(aq) These steps contribute to the formation of iron oxide, commonly known as rust, and the overall corrosion process of iron. It's important to note that the corrosion mechanisms and reactions can vary based on the specific metal, environment, and conditions involved.
11-11-2022
เพราะเหตุใดงานเสาเข็มของ บี.เค.เค.ไพล์ลิ่ง ถึงโดดเด่นไม่เหมือนใคร? หาคำตอบกันได้ในคลิปนี้ ขอขอบคุณ คุณทรงวุฒิ แจ้งประสิทธิ์ (กรรมการผู้จัดการบริษัท บี.เค.เค.ไพล์ลิ่ง จำกัด) ที่ให้ความเชื่อมั่นและไว้วางใจผลิตภัณฑ์ของ บริษัท สยามลวดเหล็กฯ มายาวนานกว่า 10 ปี
We are relentless in our pursuit for excellence in product quality and innovation. We take pride in being able to anticipate your needs and provide tailored solutions for each of your requirements. We strive to exceed expectations.